Kasiya liegt in der Lilongwe-Ebene, die von den Paragneisen und Orthogneisen des Malawi Basement Complex, die Teil des Mosambik-Gürtels sind, unterlagert wird. Der Großteil der Gneise ist semi-pelitisch, aber es gibt auch Bänder von psammitischen und kalkhaltigen Gesteinen, die unter hohem Druck und hoher Temperatur zu Granulitfazies metamorphosiert wurden. Innerhalb der Paragneis-Einheiten sind einige wenige Orthogneise eingestreut, die oft als auffällige hohe felsige Hügel ausstreichen sowie Amphibolite, Pegmatite und kleinere mafische bis ultramafische Intrusionen. Schieferung und Bänderung in den Gneisen weisen ein deutliches Nord-Süd-Streichen über das allgemeine Gebiet auf. Mächtige Restböden und Pedolith mit etwas Alluvium überlagern die Gneise und umfassen Sand- und Lateritböden sowie Feuchtgebiete.

https://www.irw-press.at/prcom/images/messages/2021/58875/210609_MaidenResource_FINAL-DRAFT_DEPRcom.011.jpeg

Abbildung 11: Drohnenfoto über der Lagerstätte Kasiya, das das offene flache Gelände und die zahlreichen unbefestigten Allwetterstraßen in der Umgebung zeigt.

Projektgeologie

Sovereigns Konzessionsgebiet umfasst 2.682 km2 über ein Gebiet im Norden, Westen und Süden von Malawis Hauptstadt, das die Lilongwe-Ebene abdeckt. Die Topografie ist im Allgemeinen flach bis leicht gewellt und die zugrunde liegende Geologie wird von Paragneis mit pelitischen, psammitischen und kalkhaltigen Einheiten dominiert.

Eine bestimmte Paragneis-Einheit ist reich an Rutil und Grafit (PGRG) und ist die Hauptquelle dieser beiden Mineralien in der Region. Dieses Gebiet war während des Tertiärs stark verwittert und in den PGRG-Zonen konzentrierte sich Rutil im oberen Teil des Verwitterungsprofils und bildete eine Restseife, wie die Lagerstätte Kasiya. Sobald dieses Material angeschnitten wird und erodiert, wird es transportiert und in breiten, regionalen vielverzweigten Flusssystemen abgelagert, die alluviale Schwermineralseifen wie den Bua-Kanal bilden.

https://www.irw-press.at/prcom/images/messages/2021/58875/210609_MaidenResource_FINAL-DRAFT_DEPRcom.012.jpeg

Abbildung 12: Modell der Rutil-Lagerstätte, das die verbleibende, in Saprolith beherbergte Mineralisierung und die verschiedenen traditionellen, in Sand beherbergten Lagerstättentypen zeigt.

Geologie der Lagerstätte Kasiya

Die hochgradige Rutil-Lagerstätte in Kasiya lässt sich am besten als Restseife beschreiben oder ist auch als eluviale Schwerminerallagerstätte bekannt. Sie entsteht durch Verwitterung des primären Wirtsgesteins und Anreicherung anstelle von Schwermineralien, im Gegensatz zum hochenergetischen Transport und Anreicherung von Schwermineralien in einer herkömmlichen Seifenlagerstätte.

Der hohe Aluminiumgehalt (Kyanit) und das Vorhandensein von Kohlenstoff (Grafit) im Wirtsmaterial deuten darauf hin, dass der Protolith sedimentären Ursprungs war. Der Protolith begann wahrscheinlich mit einem Becken vor 0,5-1,5 Mrd. Jahren, das auch einen konstanten Zustrom von Titanmineralien erfuhr.

Diese Sedimentgesteine erfuhren eine Granulitfazies-Metamorphose unter reduzierten Bedingungen in der Panafrikanischen Orogenese vor ca. 0,5-0,6 Mrd. Jahren. Die reduzierte Umgebung, der relativ hohe Titangehalt und der niedrige Eisengehalt führten dazu, dass Rutil unter diesen Bedingungen das stabilste Titanmineral ist. Eine langsame Freilegung und Abkühlung führte dann zur Kristallisation von Paragneisen mit grobkörnigem Rutil und Grafit.

Die letzte und wichtigste Phase der Anreicherung kam, als die tropische Verwitterung während des Tertiärs die obersten ca. 10 m an physikalisch und chemisch beweglichen Mineralien erschöpfte. Dies verursachte einen erheblichen Volumenverlust und eine gleichzeitige Anreicherung von schweren resistenten Mineralien, einschließlich Rutil und Kyanit.

Die Rutil-Mineralisierung liegt in seitlich ausgedehnten, oberflächennahen, flachen, "deckenartigen" Körpern in Gebieten, in denen das Verwitterungsprofil erhalten und nicht wesentlich erodiert ist. Die hochgradigen Rutilzonen scheinen geologisch kontinuierlich mit begrenzter Variabilität entlang und quer zum Streichen zu sein. Die zusätzliche Grafitmineralisierung ist nahe der Oberfläche erschöpft, wobei ab 6 m und tiefer viel höhere Gehalte auftreten.

https://www.irw-press.at/prcom/images/messages/2021/58875/210609_MaidenResource_FINAL-DRAFT_DEPRcom.013.png

Tabelle 3: Typisches Verwitterungs- und Rutil-/Grafit-Gehaltsprofil, das in Kasiya in der im Saprolith beherbergten verbleibenden Mineralisierung angetroffen wurde

Probenahme und Probenahmetechniken

In Abständen von 1 m wurden mittels Handschneckenbohrer (HA) Proben entnommen, wobei durchschnittlich etwa 2,5 kg Bohrprobenmaterial erhalten wurden. HA-Proben werden manuell aus dem Schneckenbohrer entnommen und das Probenmaterial im Feld visuell beurteilt. Wenn die Proben am Grundwasserspiegel nass werden und die Ausbringung pro Meter abnimmt, wird die Bohrung beendet.

Die Probenahme erfolgt Meter für Meter. Jede 1-m-Probe wird sonnengetrocknet, protokolliert, gewogen und mittels pXRF analysiert. Die Proben werden dann basierend auf der aufgezeichneten Verwitterungszone zusammengesetzt. Es wird darauf geachtet, dass nur Proben mit ähnlichen geologischen Eigenschaften zusammengestellt werden. Aus jedem beitragenden Meter wird eine gleiche Menge entnommen, um eine 1,5 kg-Mischprobe zu erzeugen. Teilproben wurden sorgfältig aufgeteilt, um die Repräsentativität zu gewährleisten.

Sammelproben sind immer größer als 1 m und nicht länger als 5 m. Diese Probenahme- und Zusammenstellungsmethode wird basierend auf der anerkannten Industriepraxis als angemessen und zuverlässig angesehen.

Methodik der Probenanalyse

Schwermineralkonzentrate (HMC) wurden vor Ort durch sogenanntes Wet-Tabling oder bei Diamantina Laboratories in Perth mittels Schwimm-Sink-Scheiden erzeugt.

Die Methoden zur Probenvorbereitung vor Ort in Malawi gelten als quantitativ bis zu dem Punkt, an dem ein HMC erzeugt wird.

Das HMC wird dann bei Allied Mineral Laboratories Perth (AML) in Perth mittels Carpco-Magnet bei 16.800 G (2,9 Ampere) in eine magnetische (M) und nicht magnetische (NM) Fraktion getrennt.

Die NM-Fraktionen wurden zur quantitativen XRF-Analyse entweder an ALS Perth oder Intertek Perth geschickt. Intertek-Proben wurden mittels Standard-Mineralsand-Suite FB1/XRF72 analysiert, ALS-Proben mittels XRF_MS.

Sovereign verwendet internes und externes Wet-Screening-Referenzmaterial, das in Probenchargen im Verhältnis von 1 zu 20 zugegeben wird. Das extern bezogene, zertifizierte Standard-Referenzmaterial wird von Placer Consulting bereitgestellt.

Ein Duplikat einer externen Laborrohprobe wird als externe Kontrolle des gesamten Arbeitsablaufs an Labore in Perth, Australien, gesendet. Diese Duplikate werden im Verhältnis von 1 zu 20 zugegeben.

Die Genauigkeitsüberwachung wird durch die Vorlage zertifizierter Referenzmaterialien (CRMs) erreicht. ALS und Intertek verwenden beide interne CRMs und Duplikate für XRF-Analysen. Sovereign fügt auch CRMs im Verhältnis von 1 zu 20 in die Probenchargen ein.

Die Analyse der Probenduplikate wird mit geostatistischen Standardmethoden (Scatter, Pair Difference und QQ Plots) durchgeführt, um auf systematische Messabweichungen zu testen und sicherzustellen, dass die Probenaufteilung repräsentativ ist. Standards bestimmen die Genauigkeit der Analyseergebnisse, die auf Kontrollkarten überwacht wird, wenn eine Abweichung (über 3 Standardabweichungen vom Mittelwert) eine erneute Analyse der betroffenen Charge auslöst.

Die Präzisions- und Genauigkeitsbewertung wurde für alle alternativen Arbeitsablaufmethoden durchgeführt und eine einheitliche Methode wurde von den Ressourcengeologen von Placer empfohlen. Die Untersuchung der QA/QC-Probendaten zeigt eine zufriedenstellende Leistung der Protokolle der Feldprobenahme und Analyselabors, die ein akzeptables Maß an Präzision und Genauigkeit bieten. Die Rutil-Bestimmung durch alternative Methoden zeigte keine beobachtbare Abweichung.

In geostatistischen Analysen werden akzeptable Genauigkeits- und Präzisionsniveaus angezeigt, um die Ressourcenklassifizierungen zu unterstützen, die für die Schätzung verwendet werden.

QEMSCAN der NM-Fraktion zeigt überwiegend saubere und freigesetzte Rutilkörner und bestätigt, dass Rutil die einzige signifikante Titanspezies in der NM-Fraktion ist (Abbildung 13). Gewonnenes Rutil wird folglich hier definiert und angegeben als: ausgebrachtes TiO2 im Bereich von +45 bis -600 µm der NM-Konzentratfraktion als Prozentsatz der gesamten primären, trockenen Rohprobenmasse dividiert durch 95 % (um eine Annäherung an die Spezifikationen des Endprodukts darzustellen) d. h. ausbringbarer Rutil innerhalb der gesamten Probe.

https://www.irw-press.at/prcom/images/messages/2021/58875/210609_MaidenResource_FINAL-DRAFT_DEPRcom.014.png

Abbildung 13: QEMSCAN-Bild von Sovereigns Premium-Rutilprodukt in Kasiya.

Bohrtechniken

HA-Bohrungen wurden von Sovereign in der Lagerstätte Kasiya ausgiebig eingesetzt, um die Mineralisierung abzugrenzen und um Rutil-Analyseinformationen in den oberen Abschnitten des Verwitterungsprofils zu erhalten.

In Kasiya wurden seit 2019 insgesamt 507 HA-Bohrungen mit einer Gesamtlänge von 4.820 m und 36 PT-Bohrungen (Push Tube Core) mit einer Gesamtlänge von 437 m niedergebracht. Die bisherigen Bohrprogramme zeigen eine mineralisierte Hülle von etwa 89 km2, definiert durch nominell > 0,5 % Rutil, mit zahlreichen Bereichen von hochwertigem Rutil. Bei der nahe gelegenen Lagerstätte Nsaru wurde eine zusätzliche 25 km² große, mit Rutil mineralisierte Hülle durch Bohrungen abgegrenzt.

(MORE TO FOLLOW) Dow Jones Newswires

June 09, 2021 02:31 ET (06:31 GMT)